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A numerical solution of high accuracy is obtained for the large Reynolds number, thin film 
flow over a horizontal flat plate, cylinders and spheres resulting from a vertical jet of liquid 
falling on the surface. A coordinate transformation is used which simultaneously maps the film 
thickness onto the unit interval and removes the singularity at the leading edge. The resulting 
equations are parabolic and these are solved using the Keller box method which is modified 
to accommodate the outer, free boundary. Using an extrapolation technique, results of sixth 
order accuracy are obtained with an estimated accuracy of six significant figures. For the flat 
plate, solutions for both 2-dimensional and axisymmetric jets are obtained and, for cylinders 
and spheres, different Froude numbers and volume flows are considered. The method can be 
used to solve any parabolic problem with a free boundary. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Liquid thin films occur in a variety of industrial contexts. A common example is 
the thin film of running water surrounding horizontal heat exchanger pipes in steam 
condensers. This water arises from the condensed steam and significantly affects the 
heat transfer characteristics of the tubes. Similar liquid films occur in absorbers and 
evaporators of the chemical engineering industry. In order to understand the opera- 
tion and, in particular, the efficiency of these processes it is important to have a 
detailed study of the flow in such firms. 

We shall be concerned with the large Reynolds number case for which the gover- 
ning equations are the boundary layer equations with a free surface. Many such 
flows [l-6] have been solved, usually using the Pohlhausen integral momentum 
technique [7] which assumes an approximate velocity profile across the thickness 
of the film. In this paper an accurate numerical solution is obtained against which 
such solutions can be tested. Our primary aim here, however, in a description of 
how the numerical solution is obtained; the detailed comparison with this theoreti- 
cal work is fully discussed in another paper [S]. 

Specifically we consider the following four cases: 

(a) a 2-dimensional jet falling vertically onto a flat surface [l], 
(b) a 2-dimensional jet falling vertically onto the top generator of a cylinder 
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(c) an axisymmetric jet falling vertically onto a flat surface [ 11, and 
(d) an axisymmetric jet falling vertically onto the upper pole of a sphere [S]. 

Each of these cases has a flow which is initially Blasius and with an outer 
boundary which is a free surface. To prepare the governing equations for accurate 
numerical computation it is necessary to use a transformation which removes the 
Blasius singularity and it is advantageous if the free surface is mapped onto a fixed 
outer boundary [9]. These transformations are straightforward and well known 
when applied separately but here we need to apply them simultaneously which 
involves a more general transformation. Such a transformation only becomes 
tractable by writing the equations as a first-order system and making use of the 
form that the governing equations take. This transformation is described in 
Section 3. 

The Keller box method [8,9] incorporating extrapolation has proved very 
successful in obtaining results of high accuracy for parabolic boundary layer type 
equations [lO-163. Section 4 describes how this method is modified to incorporate 
the free boundary. The results and their accuracy are discussed in Section 5, 
together with our main conclusions. 

2. GOVERNING EQUATIONS 

(a) Two-Dimensional Flat Plate 

In Fig. l(a) is depicted a 2-dimensional flow in which a thin jet of width 2H, 
plunges vertically with velocity U, onto a horizontal flat plate. By symmetry the 
flow separates equally to either side and we will be concerned with the flow to the 
right of A immediately after the point at which the flow is essentially horizontal. 
Since we are considering the large Reynolds number case in which the flow is con- 
fined to a thin film, we may neglect vertical velocities in comparison with horizontal 
and X derivatives in comparison with Y in the Navier-Stokes equations (where X 
and Y are the horizontal and vertical coordinates respectively). The resulting 
governing equations become very similar to the boundary layer equations and are 

au av x+ar=o 

(1) 

where U, V, p, p, and v are the horizontal and vertical velocities, density, pressure, 
and kinematic viscosity, respectively. The third equation shows that p is a function 
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of X alone and, if we assume the pressure to be constant outside the firm, this 
implies that it is constant thoughout the film. Equations (1) then simplify to 

%+Fy=O 

au au aw uz+ Vr=‘ayz 

which are subject to the boundary conditions 

u= v=o on Y=O 

au 0 -= 
ay on Y=H(X), X>O, 

(2) 

(3) 

where the first of these is the no-slip condition and the second assumes no shear on 
the free surface and H(X) is the film thickness. Conservation of mass demands 

I 
H(X) 

U d Y = constant = H, Uo. (4) 
0 

As the fluid turns the comer from vertical to horizontal flow, the flow is essentially 
inviscid since the boundary layer has not yet developed (see [8]). We may then use 
Bernouilli’s equation p + fpU* = constant along a streamline and since both p and 
p are constant we deduce that the initial condition is 

u= uo, v=o on X=0,0< Y< H(X). (5) 

FIG. 1. The vertical jet and resulting film for (a) the flat plate and (b) the cylinder or sphere. The 
dotted curve AB indicates the growing boundary layer. 
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Equations (2) can be satisfactorily nondimensionalised by 

X= RH,,x, Y=Hoy, H= H,h 

where R = U,H,/v is the jet Reynolds number. The problem then becomes 

au au --+-=I) 
ax ay 

au au a% 
u~+"dy=@ 

subject to 

u=v=o on y=O 

au 
5=O 

on y=h(x) 

u= 1, v=o on x=0,0< y<h(x) 

with integral constraint (4) yielding 

.i 

h(x) 
udy= 1. 

0 

(6) 

(7) 

(8) 

(9) 

(b) Cylinder 

For the cylinder (Fig. l(b)) the vertical jet is the same as for the flat plate having 
width 2H, and velocity U,,. Using the Navier-Stokes equations in cylindrical polar 
coordinates including a vertical gravitational force term and assuming that the film 
thickness is thin, the govening equations equivalent to Eqs. (2) are 

!.?+-"=o 1 a0 
ar a ae 

ah vg ah a%, 
u,-+--=gsine+v- 

ar a ae ar* ' 

(10) 

where v,, II@, g and a are the velocities in the r and 0 directions, the acceleration 
due to gravity, and the radius of the cylinder, respectively. The conservation of 
mass integral constraint is 

vg dr = U,,H,,. (11) 
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These equations are non-dimensionalised using 

e = X, r=a+ay, R 112 c 
H=+h 

P 

where R, = U,a/v is the Reynolds number, giving 

!?!+aU=, 
ax ay 

au au i . a% 
ux+vdy=~smx+dy2 

(12) 

(13) 

subject to the integral constraint 

s h(x) udy=yc (14) 
0 

and the same boundary conditions (8) as the flat plate. Here F= Ui/ga is the 
Froude number and y = R112Ho/a. c e 

(c) Axisymmetric Flat Plate 

In this case we have a cylindrical jet of radius Ho and velicity U. plunging 
vertically onto a flat plate. Equations (2) in cylindrical polar coordinates are 

it (rur)+2=0 

u au,+u &yJr 
r dr 2 aZ - az2 

(15) 

with integral constraint 

t-u, dz = $ Hi U. (16) 

where r, z, u,, and U, are the radial and vertical coordinates and corresponding 
velocities, respectively. These may be non-dimensionalised by 

y = R’13x z = R - ‘13 Y, H = R - ‘/‘h 

uo u, = u,u, u*=R2/3v 
(17) 
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to give 

J-~(xu)+~=O 

au au a224 
ux+vdy=ay2 

and integral constraint 

s 

h(x) 
xudy=+, 

0 

(18) 

(19) 

again subject to the boundary conditions (8). 

(d) Sphere 

In this case a cylindrical jet (radius Ho and velocity U,) impinges onto the top 
of a sphere. In this geometry the first of equations (10) and integral constraint (11) 
become 

( uQ sin 0) = 0 

(20) 

I 
a+H(B) 

a sin 0 vg dr = $H;U, 
a 

with the second of equations (10) being unchanged. These are non-dimensionalised 
using (12) to give 

3 u sin x) + 2 (v sin x) = 0 
ay 

au au i a% 
u-++-=-sinx+- ax ay F w 

with integral constraint 

s h(x) u&=ys, 
0 

(21) 

where yS = fRy’H~/iJ~ and subject to boundary conditions (8). 
For each of the four problems we eliminate the continuity equation by 

introducing a stream function + defined by 

a* u = G(x) -, 
ay 

a* v= -G(x)% 
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where G(x) equals (a) 1, (b) 1, (c) l/x, and (d) l/sin x for the four cases. Owing 
to the geometry h(x) is singular at x = 0 in case (c) and at x = 0 and z in case (d). 
To remove this singularity we introduce J and h(x) given by 

Y = G(x) Y, h = G(x)l;. (24) 

Substituting euations (23) and (24) into (7) (13) (18), and (21) gives 

subject to boundary conditions 

* =o, +.v = 0 on y&O 

* =YY l+byr=O on y=A(x),x>O 

*= v, h=y on x=O,O<y<h(x), 

(25) 

(26) 

where y equals (a) 1, (b) yC, (c) 4, and (d) yS. Here II/ = y on j = h(x) is the integral 
constraint and I; = y at x= 0 sets the initial film thickness consistent with this 
constraint. In the next two sections we will be concerned with the numerical 
solution of Eqs. (25) subject to (26). 

3. TRANSFORMATION OF THE EQUATIONS 

There many numerical techniques for solving free boundary problems [9]. The 
simplest approach would be to use a fixed grid in which the position of the free 
boundary is “tracked” as the calculation proceeds. However, such a method can be 
inaccurate and a more satisfactory approach would be to transform the domain 
onto a rectangle. This is the technique we seek to use here, adapted so as to remove 
the boundary layer inconsistency at leading edge. From (26) we see that the 
boundary conditions ti9 = 1 at x = 0 and tiB = 0 at j= 0 for x > 0 are inconsistent, 
and this is usually removed by making the Blasius transformation y = x112q, 
+ = x”‘f However, this is unsatisfactory in our case since in (x, q) coordinates as 
x -+ 0 the outer boundary J= h(x) would have infinite extent and be difficult to 
cope with numerically. Hence, we will use a more general transformation which will 
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keep the essential features of the Blasius transformation and at the same time have 
the outer boundary at a finite distance. 

To illustrate this transformation we will consider the cylindrical case (b) and 
anticipating using the Keller box method to integrate the equations we write the 
second of equations (25) as the first-order system 

uc=w 

1 
Wj+Fsinx=uu,-w$,. 

We transform from (x, y) variables to (5, q) variables using 

j = ytt, ?I, x=x(<). 

(27) 

(28) 

The dependent variables are transformed as 

$=grf, u=rii, ,2, 
g ’ 

(29) 

where r and g can depend on both 5 and q. Changing the order, Eqs. (27) then 
become 

where s = @/iaq and ’ = d/d& Using (29) rather than a more general case causes the 
right-hand side of the third of Eqs. (27) to be transformed without involving terms 
containing Ye. The exclusion of je and regarding the governing equations as a first- 
order system has considerably simplified the algebra which otherwise would be 
untractable. 

A suitable transformation for j in Eq. (28) should map the interval 0 6 f < ti 
onto 0 < q < 1 and for small r it should mimic the Blasius transformation p = qxl’*, 
A simple transformation which has these properties is 

(31) 
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where the second of Eqs. (31) anticipates that variables near the leading edge vary 
as x1”. In the Blasius transformation (with r set to unity), g= 5, but this is 
unsatisfactory since f-i cc as r + 0 and instead we choose g to be 

5 
g=<+1-4’ (32) 

Using Eqs. (31) and (32) with r = 1, Eqs. (30) become 

Pa) 

where x(t) = h(x) and t = L(h( 1 + 5)’ ‘B/(< + 1 - v)~). Here a = 4, /I = 0, and Iz = 1 
have been introduced so that Eqs. (33) will be capable of describing all four cases. 
Boundary conditions (26) now become 

f=O, ii=0 on q=O,t>O 

f=Yy !G=o on q=l,t>O (34) 

f=f&l) on <=O,O<v]<l, 

where the initial profile fo(v) is found by putting 5 =0 and K = y into (33) and 
solving subject to conditions f = U = 0 at q = 0 and f = y at Y) = 1. This needs to be 
found numerically (see next section). 

Although the discrepancy in boundary conditions at (0,O) has been removed, it 
will be observed that transformation (31) has a coordinate singularity at r = 0, 
r) = 1 (it does not seem possible to devise a transformation with the required 
properties without incurring such a singularity). However, the flow is very uniform 
in the neighbourhood of this point and we experienced no difficulty in obtaining 
numerical results of high accuracy. For the flat plate case (a) u N 1 - eekidZ, where 
d is the distance from the singularity, which is extremely flat. 

For the 2-dimensional flat plate (a) the equations are the same as the cylindrical 
case with the gravitational term in Eq. (25b) set to zero. In this case, however, we 
would like to integrate the equations over the whole range 0 < 5 < cc and to 
perform this numerically in a satisfactory manner we require the dependent 
variables to be of order unity throughout the entire range (see [9]). For large x the 
boundary condition (26) implies that $ will be independent of x and hence (25a) 
will permit a similarity variable j/lx. Hence for large x, h N x and conservation of 

581/84/2-9 
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mass demands u N l/x. For f, U, and W to be of order unity over the whole range 
of 4 we set 

1 
h=(l+e)2h”, al+<)* 

r=(1+5)2’ g=5+1-4’ (35) 

Using (31), Eqs. (25a) transforms into (33), with a= 4, /?= 2, and A= 1, and is to 
be solved subject to (34). 

For the axisymmetric flat plate (c) the boundary layer thickness grows like x1’* 
for small x in the y direction. Since, from (24), j = xy, the thickness will grow like 
x3/2 in units of jj and hence an appropriate transformation to replace (31) is 

(36) 

At large x (2%) will permit a similarity variable y/x’ and hence h-x3 with 
u N 1/x3 from mass conservation. Demanding that dependent variables are of order 
unity for all 5 can be achieved by using (35) with 5 as defined by (36). Equation 
(2%) then transforms into (33) with a = $, /? = 2, and 2 = 1 with boundary condi- 
tions as given by (34). 

For the sphere (d) the geometry is axisymmetric and hence we employ the trans- 
formation (36) and since the range in x is finite (0 <x < rr) it is appropriate to set 
r = 1, h = K, and g given by (32) as in the cylindrical case. Substitution again yields 
equation (33) subject to boundary conditions (34) with GI = t, /I = 0, and 
3, = t413 cosec2(52/3), where 1 should be regarded as a geometrical factor. 

In summary equations (33) subject to (34) describe all four cases and are derived 
from (30) using the transformation 

al+ Wrth 
y= r+j-q ’ 

x = 5’1” 

with 

1 
I?=(l+OBX, a1 + w 

r=(l+ “=5+1-q’ 

where a, fi, and ,I are 

(4 a = 4, /? = 2, A = 1, 

(b) a=$,/?=O,;l=l, 

(c) a=$p=2,1=1,and 

Cd) a = I$, /I = 0, i = t4’3 cosec2(52’3) 

for the four cases. 

(37) 

(38) 

(39) 
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4. NUMERICAL PROCEDURE 

(a) Mod$cation of the Box Method 

The numerical method employed is a modification of the Keller box method 
[ 10, 111. A grid is placed on the domain 5 > 0, 0 < rl d 1, which is not assumed to 
be uniform, whose nodal points are 

5i=ti-l+ki, i = 1, 2, . . . . 

Vj=Uj-l+hj, j= 1, 2, . . . . N, 
(40) 

where &, = 0, Q, = 0, 11~ = 1, and N is the number of mesh spaces in the q direction. 
Equation (33a) is differenced using formulas symmetric about ( tieI + kJ2, 
vi- 1 + hi/Z) which for any function ~(5, ‘1) are 

~"~.(zi,j-Zi-I,j+Zi,j-I-Zi-i,j-l) 
I 

az i 
drlvzS;(zi,j-zLj-L+zi-L,j-Zi-L,j-l) 

J 
(41) 

ZE b(Zi,j+Zi,j-1 +zi-,,j+Zi-*,j-l), 

where zisj= z(ci, qj). Since (33b), (33~) do not have a 5 derivative they can be 
differenced about the point (ti, vi- 1 + hj/2). It was found in practice that this 
damps high frequency Fourier error components better than differencing about 
(ti- i + k,/2, qj-, + hj/2). The appropriate formulas are given by setting index i - 1 
to i in (41). 

Since the equations are parabolic a solution can be found by marching in the 5 
direction. That is if all the variables are known at location i - 1 then the difference 
equations resulting from (33) and (34) give a set of 3N + 4 nonlinear equations for 
the 3N+ 4 unknowns fi/, i$, WV, j= 0, 1, . . . . N and gi. 

These are solved using Newton’s iteration 

A’“’ dx’“‘= -p 

x(~+‘)=x(s)+dxb) (42) 
> 3 = 0, 1, 2, . ..) 

where A(“) f a+(“)/&&~, XT= (Lo, Uio, Gio, fil, fiil*il, ..*y fiNI CiNI WiNv hi), and $ 
consists of the left-hand sides of the differenced equations of (33) and (34) in which 
all terms have been taken over to the left. The ordering of equations in Q is (i) 
boundary conditions (34) at q= 0, (ii), Eqs. (33) in the order a, b, c at the centred 
location j= 1, 2, . . . . N- 1, and (iii) conditions (34) at q = 1. For N= 3, A(“) has the 
form 
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-1 0 01 I I I 0 
0 10; I I 

I -----A------;-----ye- I 0 
--l-- 

* * * ’ 
I * * * 

I I 1 * 
I 

* * Ol* * 0 I I I * 

0 * *IO**; 
I I 
I I * 

------&---- --I------,------~- 

I* * *I* * * 1 1 * 

l**ol**ol I * 

;o**;o**; I * 
----- J------l------~- ----I- 

I I 
I 

tloo~o 
I 

I I loo 1 IO 

(43) 

where * denotes a possible non-zero element and unfilled parts are zero. 
Matrix (43) can be expanded by two extra rows and columns to form a block 

matrix with 3 x 3 blocks if we include two extra unknowns st and s2 and two extra 
equations s I = 0 and s2 = 0. The dummy variables s r, and s2 are appended to x and 
the left-hand sides of the two dummy equations appended to 4. We now have 
3N + 6 equations and unknowns and the matrix A’“’ has the form 

where the A’s 

20 co 
BI A, 

B2 

Do 
Cl Dl 
A2 c2 02 

B,-,’ AN-; C,el D,. 
B, AN DN 

B A,, N+I 

B’s, C’s, and D’s are 3 x 3 matrices in which the B’s, C’s, and D’s 
are respectively of the form 

[a ; ;I. [; H 91, [: ; lt] 
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and where 

(45) 

Thus the matrix A’“’ is not block diagonal as is usual with the Keller box method 
and the solution of (42) needs to be modified to take account of the column of D’s. 
Let Ax’ = (Ax;, Ax;, . . . . Ax;+ i) and $’ = ($6, $;, . . . . +‘,+ ,), where Axj and +j are 
three vectors; then a suitable algorithm for solving the matrix equation in (42) is 

E-G’, +o+-Ec,, D, t ED0 

A,-1 +ECj-1, Et (Aj-BjAj-,)-I 

+j+EE(4j-Bj4ji-,), Djc E(Dj- BjDj-,), j = 1, 2, . . . . N 

A,v+ D,v, E+(Aiv+r&+Jd-’ (46) 

Ax N+I+E(~N+I-BN+I$N) 

Ax, + +N - A, Ax,,, 

Ax~+~~-A~Ax,+~-D~Ax~+~, j=N-1, N-2 ,..., 0, 

where + denotes replacement. Algorithmically this is simply a modification of the 
usual solution of a block tridiagonal system to include the Dj. The algorithm can 
be made efficient by taking account of the zeros appearing in matrices (45). 

For the initial profile fO(q), 5 = 0 and ?i = y in Eq. (33) and, since no t derivatives 
appear, (33a) is differenced the same way as (33b, 33~). The ensuring system 
reduces to 3N + 3 equations and unknowns which are solved using (42). In this case 
A’“’ is block tridiagonal and can be inverted in the usual way. 

(b) Extrapolating the Results 

Since central differences are used, the local truncation error can be written as a 
Taylor series in powers of h* and k*, where h = maxi hj and k = maxi k,. As pointed 
out by Keller it is therefore possible, by solving the problem on different sized grids 
and using Richardson’s extrapolation, to produce results of high accuracy. For 
example, results using M x N, 2M x 2N, and 3M x 3N grid spaces, which have local 
error O(h* + k*), can be combined to produce results of O(h6 + k6) on the coarsest 
grid. For most problems this gives adequate highly accurate results [9, 12, 133, but 
for some problems, for example, jet problems [14, 151, difficulties can arise 
particularly near 5 = 0. Second, if the results obtained are not sufficiently accurate 
it is unclear which of h or k needs to be reduced. For these reasons we adopt the 
following approach. 

Suppose a coarse grid of size M x N is placed on the 5, q domain with each cell 
being divided into ni and mj sub-cells in the 5 and q directions, respectively, and the 
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TABLE I 

The Extrapolation Process for the Film Thickness at 5 = 1 
in the cylindrical case F= 2, y = 1 

{ - q extrapolation tj - ( extrapolation 

(a) (b) 
2.0104300 2.0104300 
2.0099066 2.0097321 2.0102938 2.0101847 
2.0098107 2.0097340 2.0097343 2.0102468 2.0101865 2.0101871 

2.0102938 2.0099066 
2.0097696 2.0095949 2.0097696 2.0096600 
2.0096736 2.0095968 2.0095971 2.0097229 2.0096628 2.0096637 

2.0102468 2.0098107 
2.0097229 2.0095482 2.0096736 2.0095639 
2.0096269 2.0095502 2.0095504 2.0096269 2.0095669 2.0095679 

(cl (d) 
2.0097343 2.0101871 
2.0095971 2.0094873 2.0096637 2.0094893 
2.0095504 2.0094905 2.0094915 2.0095679 2.0094913 2.0094915 

problem is solved numerically for each of the cases i= 1,2, 3 and j= 1,2, 3. If the 
set { gU} denotes the result at a common grid point then gli, gz,, and gjj give an 
extrapolated result gj which has error O(h2 + k6) given by 

gj = +23 - 442. h =n g2j-nfg,j : h =n g3jmn:g2j : 

n:-n: ’ 12 nf-nf ’ 23 ni-ni * (47) 

This is illustrated for a typical variable by (a) in Table I in which column 1 con- 
tains the g,, column 2 the elements h12, hz3, and column 3 the gj. The 2, are then 
used to give a final extrapolated result g with error O(h6 + k6) using formulae 
similar to (47) with ni replaced by mj ((c) in Table I). One may obtain g by a 
different route, namely, using gi,, gi2, and gi3 we can obtain extrapolated results 
ii which are O(h6 + k2) and then extrapolating the gi finally gives 2 ((b) and (d) 
in Table I). The fj, being O(h2 + k6), are virtually error free from the l discretisa- 
tion and the differences between them reflect the error due to the r] discretisation. 
Similarly, the gi reflect the error due to the Zj discretisation and, hence, it is possible 
to decide which of either h or k needs to be reduced if more accuracy is required. 
The acquisition of nine sets of results rather than three obviously involves more 
computer time, but the added flexibility and robustness of method more than com- 
pensates for this, especially since the total time taken is not long on modern 
machines. 

In order to estimate the error we assume that 1 S3 -A,,/, Jh23 - 81, and 12 - gl 
are roughly geometric where g is the true solution. This is obviously crude but 
experience has shown that this gives the order of magnitude of the error more 
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accuratemy than IhZ3 - 21, Applying this to both ii and gj gives errors in the results 
from the < and q discretisations, respectively; the maximum of the two can be taken 
as the error incurred. 

(c) Separation in the Cylindrical Case 

In the case of the cylinder it is conceivably possible to place a vertical barrier at 
the top generator which only allows fluid to pass around one’side of the cylinder. 
Hence instead of two films colliding at x = rc, the one film would continue past 7c 
and leave the surface at some point rc + x1 (x1 > 0). At this separation point the 
skin friction is zero; that is, uy = 0 at x = n + x 1, y = 0. Since the equations become 
singular at this point, the point is approached geometrically in the following 
manner. If 5, is the separation point and 3 = W(<, 0) then a feature for boundary 
layer separation is that G is proportional to (<, - <)“* near separation. Thus if the 
equations have been integrated as far as t;, and assuming that (<, - 5,) is propor- 
tional to i$ then 

(48) 

The new value t,+ 1 is given dynamically by ‘5, + ~(5: - <,), where 0 < c < 1; the 
value of c used in the calculations is 0.4. Using this technique we were able to 
integrate to within lo-” of separation. Since the l, are given dynamically they 
need to be subjected to the extrapolation process described earlier so both the 5 
coordinate and <, are accurate to O(h6 + k6). 

In the spherical case the geometical factor 2 + og as x + n. In order to maintain 
accuracy it is necessary to approach x = n with increasingly shorter step-lengths, 
and a geometric decrease accomplishes this satisfactorily. 

5. RJZSULTS AND CONCLUSIONS 

A typical run had a coarse grid of dimensions 60 x 48 on the (5, r]) domain with 
each cell being divided into 1,2, 3 and 2, 3,4 sub-cells for the two directions, 
respectively. Because of the coordinate singularity at < = 0, 4 = 1 a non-uniform grid 
was employed given by (a) 5 = i sinh[[1.5(1 + [‘.‘)I, (b) 5 = [l.‘, (c) and (a), and 
(d) 5 = [1.75 with q = 1 - (1 - f)‘.5 for each case where [ and q are uniform. This 
gave d< - 0.004 and dq - 0.003 near the singularity in all cases, which is sufficiently 
small to give good accuracy. The formulae in (a) and (c) enabled us to integrate 
as far as t - 109, which was necessary for the profile at infinity to be determined 
with sufficient accuracy. The programs were run on a VAX 8650 and each took 
approximately 6-7 min of CPU time. 

From the convergence of the extrapolation process described in the last section 
the absolute errors for the four cases are (a) 3 x lo-‘, (b) 2 x lo-‘, (c) 9 x lo-‘, 
and (d) 6 x lo-‘. Comparing the initial profile at 5 = 0 with the Blasius solution, 
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a 

b 

E 

FIG. 2. Velocity profiles for (a) the 2-dimensional flat plate; (b) the cylinder, F= 5, y = 1; (c) the 
axisymmetric flat plate; and (d) the sphere, F= 10, y = $. The outer edge of the profiles are aligned along 
the t-axis. 
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it is found to be accurate to at least seven decimal places. For the two flat plate 
cases, the solution as 5 + co is known [ 1 ] and this indicates an accuracy of seven 
or eight decimal places. From this data the results seem accurate to about six 
decimal places which is more than sufficient for most purposes. 

Figures 2-7 depict the flavour of the results. Figure 2 shows isometric type plots 
of the velocity profiles ~(5, j$ 0 < j Q h, on the 5, jj plane. These have been shifted 
in the jj direction such that the outer edge lies along the 5 axis in order to facilitate 
easier viewing. The curves joining the profiles are thus the edge velocity ~(5, h) and 
the scaled film thickness A. The individual cases shown are (a) the 2-dimensional 
flat plate, (b) the cylinder F= 5, y = 4, (c) the axisymmetric flat plate, and (d) the 
sphere F= 10, y = f. Table II gives the numerical results for the scaled film thickness 
and edge velocity in these four cases. Figures 3-7 show (a) the scaled film thickness 
and (b) the edge velocity for various cases. Figure 3 shows the two flat plate cases, 
Figs. 4-6 show the cylindrical results for y = 1, 0.5, and 0.2 respectively for each of 
the cases F= 1,2, 5, and 10, and finally Fig. 7 shows the sphere for y = 4 with the 
same four values of F. 

In the two flat plate cases (Fig. 3) we see, as expected, the viscosity slows down 
the flow such that, at large x, the velocity varies as l/x for the 2-dimensional case 
and 1/x3 for the axisymmetric case as anticipated by the theory. The film thickness 

FIG. 3. (a) Scaled film thickness and (b) edge velocity for the 2-dimensional and axisymmetric flat 
plates. 
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TABLE II(a) 

Film Thickness and Edge Velocity 
for the 2-Dimensional Flat Plate 

x Film thickness Edge velocity 

0.0 1OOOOOO l.OOOOOO 
0.01 1.172079 1.OOOOOO 
0.05 1.384780 0.9987022 
0.2 1.774921 0.9009388 
0.5 2.336475 0.6956187 
1.0 3.243957 0.5012264 
2.0 5.057765 0.3214787 
5.0 10.49916 0.1548660 

10.0 19.56816 0.08309232 
30.0 55.84414 0.02236693 

100.0 182.8101 8.894277 x lo-’ 
400.0 726.9498 2.236693 x 1O-3 
2x103 3.629029 x lo3 4.480438 x 1O-4 
1 x lo4 1.813942 x lo4 8.963701 x 1O-5 
1 x lo5 1.813814 x 10’ 8.964337 x 1O-6 
1 x 10’ 1.813799 x 10’ 8.964408 x 10-s 
1 x lo9 1.813799 x 10’ 8.964408 x 10 -lo 

TABLE II(b) 

Film Thickness and Edge Velocity for the Cylinder F= 5, y = f 

X 

Film 
thickness 

Edge 
velocity 

0.0 O.WOOOOO 1.OOOOOO 
0.01 0.6720672 0.9996728 
0.03 0.7980861 0.9653357 
0.06 0.9265360 0.8687237 
0.1 1.074188 0.7550066 
0.2 1.419663 0.5694673 
0.3 1.726205 0.4638910 
0.5 2.129748 0.3641918 
0.7 2.237806 0.3371484 
1.0 2.145926 0.3470054 
1.3 2.032394 0.3669183 
1.6 1.975079 0.3788947 
2.0 1.991970 0.3774695 
2.5 2.188305 0.3464769 
3.0 2.829822 0.2753540 
II 3.287692 0.2437365 
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TABLE II(c) 

Scaled Film Thickness and Edge Velocity 
for the Axisymmetric Flat Plate 

x 
Scaled lilm 
thickness Edge velocity 

0.0 O.%OOOOO l.WOOOO 
0.1 0.5314171 l.OOOOOO 
0.2 0.5888611 l.OOOOOO 
0.3 0.6632482 0.9998393 
0.4 0.7513553 0.9870793 
0.5 0.8523836 0.9285230 
0.7 1.129381 0.7193735 
1.0 1.924282 0.4224856 
1.5 4.796132 0.1695078 
2.0 10.38868 0.07825651 
3.0 33.36347 0.02436742 
5.0 151.8650 5.353319 x 1om3 

10.0 1.209914 x 10’ 6.719332 x 1O-4 
20.0 9.674311 x lo3 8.403511 x 1O-5 
50.0 1.511506 x lo3 5.378619 x 1O-6 

100.0 1.209200 x lo6 6.723302 x lo-’ 
1 x lo3 1.209200 x lo9 6.723307 x lo-” 
1 x lo4 1.209199 x 10” 6.723306 x lOI 

TABLE II(d) 

Scaled Film Thickness and Edge Velocity 
for the Sphere F= 10, y = i 

X 

Scaled film 
thickness 

Edge 
velocity 

0.0 0.5OOOoOO 1.OOOOOO 
0.2 0.5871499 1.001992 
0.4 0.7395193 0.9961222 
0.6 0.9301206 0.8619230 
0.8 1.195809 0.6709312 
1.0 1.538011 0.5163180 
1.2 1.884614 0.4149664 
1.4 2.155804 0.3570408 
1.6 2.320050 0.3277185 
1.8 2.392590 0.3 152320 
2.0 2.400636 0.3124411 
2.3 2.333868 0.3189425 
2.6 2.206407 0.3333528 
3.0 2.005745 0.3536769 
K 1.95855 0.35609 
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FIG. 4. (a) Film thickness and (b) edge velocity for the cylinder with y = 1 for various values of F. 
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FIG. 5. (a) Film thickness and (b) edge velocity for the cylinder with y = 0.5 for various values 
of F. 
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FIG. 6. (a) Film thickness and (b) edge velocity for the cylinder with y =0.2 for various values 
of F. 
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(a) Scaled film thickness and (b) edge velocity for the sphere with y = f for various values 
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increases with x (a consequence of the conservation of mass) with h varying as x 
and x2 for the two cases, respectively (li varies as x3 in the axisymmetric case). 
For the cylindrical cases (Figs. 4-6), the velocity of the flow is controlled by two 
opposing forces, viscosity trying to slow it down and gravity trying to speed it up. 
The gravitational component of force affecting the flow is greatest near x = n/2 and 
least near x = 0 and x = rr. Hence initially we have a decrease in velocity (which is 
sharp in most cases), followed by a slight increase as gravity starts to dominate, 
and finally a gradual decrease as the bottom generator is approached. As F 
increases the effect of gravity decreases and hence the high velocity results 
correspond to the small F values. As y decreases the amount of fluid in the 
impinging jet decreases and the thinner the ensuing film. In such cases the boundary 
layer will reach the outer boundary (point B in Fig. l(b)) sooner and hence the 
initial velocity decrease becomes more sharp as y decreases. Owing to mass 
conservation the Iilm thickness curves vary in an analogous but opposite sense to 
those of the edge velocity. Because of the geometrical effect, the spherical edge 
velocity (Fig. 7) is initially affected mainly by gravity with the decrease in velocity 
due to viscosity occurring later. 

For the cylinder, where the flow is restricted to one side, the separation points 
obtained were found to be accurate to six decimal places and the values of x1 for 
y = 1 are shown in the table below. For the higher gravity dominated cases (small F), 

F 1 2 5 10 

Xl 0.221636 0.260809 0.322047 0.379619 

the flow separates sooner as one would expect intuitively. 
It is not the intention in this paper to make formal comparisons with the 

theoretical results obtained using integral methods since this has been done else- 
where [S]. However, in the summary of that paper it was found that good agree- 
ment is obtained in all cases where the Pohlhausen technique is used with an 
assumed quadratic lit for the velocity profile. Even better agreement is obtained for 
quartic profiles including a good prediction of the separation point for the one- 
sided flow around a cylinder. Hence one can use the Pohlhausen method for similar 
problems with a high degree of confidence especially if quartic velocity profiles are 
assumed. 

In conclusion we have demonstrated that by modifying the Keller box method it 
is possible, incorporating extrapolation, to obtain results of high accuracy for 
parabolic problems having a free boundary. Furthermore it is possible to success- 
fully remove the singularity associated with the leading edge of the boundary layer 
equations and simultaneously keep the outer boundary at a finite distance from the 
generating surface. The technique can be used as the basis of more complex 
problems, for example, thermal and convective layers and truly 3-dimensional flows 
such as an axisymmetric vertical jet impinging on the top generator of a cylinder. 

581/84/2-10 
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